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Abstract

The complete nucleotide sequence of the plastid genome of the unicellular primitive red alga
Cyanidioschyzon merolae 10D (Cyanidiophyceae) was determined. The genome is a circular DNA com-
posed of 149,987 bp with no inverted repeats. The G + C content of this plastid genome is 37.6%. The
C. merolae plastid genome contains 243 genes, which are distributed on both strands and consist of 36 RNA
genes (3 rRNAs, 31 tRNAs, tmRNA, and a ribonuclease P RNA component) and 207 protein genes, in-
cluding unidentified open reading frames. The striking feature of this genome is the high degree of gene
compaction; it has very short intergenic distances (approximately 40% of the protein genes were over-
lapped) and no genes have introns. This genome encodes several genes that are rarely found in other
plastid genomes. A gene encoding a subunit of sulfate transporter (cysW) is the first to be identified in
a plastid genome. The cysT and cysW genes are located in the C. merolae plastid genome in series, and
they probably function together with other nuclear-encoded components of the sulfate transport system.
Our phylogenetic results suggest that the Cyanidiophyceae, including C. merolae, are a basal clade within
the red lineage plastids.
Key words: Cyanidioschyzon merolae; red algae; plastid; genome sequencing

1. Introduction

Plastids are unique organelles found in land plants,
algae, and some protozoa. Plastids play important roles
in photosynthesis and the biosynthesis of amino acids,
fatty acids, vitamins, etc., in the cell. They have their
own genetic systems, and their own genomes.

The origin and evolution of plastid genomes, or plas-
tids themselves, have long been an important subject in
the biological sciences. Plastids represent the endosymbi-
otic remnants of a free-living cyanobacterial progenitor,
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which lost the vast majority of its ancestral cyanobacte-
rial genes after primary plastid endosymbiosis.1 In order
to function, plastids depend on the cell nuclei for most
of their proteins and other materials. Plastid gene ex-
pression and differentiation are largely controlled by the
cell nucleus, as most regulators and sigma factors are en-
coded in the nuclear genome.2 How the cyanobacterial
endosymbiont evolved into the plastid remains to be elu-
cidated.

Many complete nucleotide sequences of plastid
genomes have been determined and their gene contents
analyzed.3–11 The complete genome sequences of several
cyanobacteria have also been determined.12–14 This se-
quence information allows phylogenetic comparison and
has made it possible to study the evolutionary relation-
ships among plastids and cyanobacteria in terms of com-
position and structure. Furthermore, in order to under-

D
ow

nloaded from
 https://academ

ic.oup.com
/dnaresearch/article/10/2/67/371320 by guest on 09 April 2024



68 Plastid Genome Sequence of Cyanidioschyzon [Vol. 10,

stand how this organelle has diverged since the primary
endosymbiosis event, information on the nuclear genome
is very important for the analysis of gene transfer be-
tween the plastid and nuclear genomes.

The red algae are thought to be one of the basal eu-
karyotic lineages, and may possess ancestral features of
eukaryotic phototrophs.15 The plastid genomes of the
red lineage often contain genes that are involved in the
biosynthesis of amino and fatty acids; however, few such
genes are present in the plastid genome of the green lin-
eage.

C. merolae is a unicellular red alga that is found in
acidic hot springs,16 and it is thought to be one of the
most “primitive” eukaryotes according to many morpho-
logical characteristics.17 The C. merolae cell contains one
mitochondrion, one plastid with a centrally located plas-
tid nucleoid, one Golgi body, and one microbody.18 We
have used this alga to study organelle proliferation us-
ing cytological and organelle genome analyses. The mi-
tochondrial genome of C. merolae has been completely
sequenced;19 it shares many genes with higher plants,
as well as Reclinomonas americana (Jakobid)20 and
Acanthamoeba castellanii (Acanthamoebidae),21 which
implies that the mitochondrial genome of C. merolae is
very primitive. In addition, Kuroiwa’s group is in the
process of sequencing the entire nuclear genome of this
organism. The nuclear genome of C. merolae is esti-
mated at 16.4 Mbp, which is considered to be the mini-
mum genome size in eukaryotes containing plastids. The
molecular phylogeny inferred from several nuclear genes
supports the basal eukaryotic position of this alga.15 In
addition, the organization of the ribosomal protein gene
clusters of the plastid genomes of C. merolae and var-
ious plastids have been compared, and their genomic
rearrangements have been discussed.22 C. merolae pos-
sesses several ancestral photosynthetic eukaryote traits,
and its plastid genome is a good candidate as a link be-
tween cyanobacteria and plastids.23 Here, we report the
complete nucleotide sequence of the plastid genome of
C. merolae, with analysis of its genome structure and
gene content. In addition, using a set of 8308 concate-
nated amino acid sequences of 41 plastid genes from var-
ious plastid lineages, we determined the phylogenetic po-
sition of the C. merolae plastid.

2. Materials and Methods

2.1. DNA sources
The C. merolae cultures given to us by Dr. G. Pint

were originally mixed with Cyanidium caldarium Forma
A (RK-1) and Galdieria sulphuraria (C. caldarium
Forma B or M-8 type). C. merolae 10D was iso-
lated by the single-colony isolation method on a Gellan
Gum plate.24 Cells of C. merolae 10D were grown in
Allen’s medium25 as previously described26 and used to

isolate plastid DNA according to previously described
methods.27

2.2. Library construction
Plastid DNA was partially digested with the restriction

endonuclease Sau3AI and the resultant fragments were
cloned in lambda DASH II (Stratagene, CA, USA). Sub-
cloning into pBluescript II SK+ (Stratagene) was per-
formed using Escherichia coli XL1-Blue (Stratagene) as
the host bacterium. Exonuclease III and mung bean nu-
clease digestion (Stratagene) were used to create a series
of overlapping deletions of the plastid insert.

2.3. DNA Sequencing
The nucleotide sequence of both strands of the plas-

tid library was determined by the chain-termination
method28 with a Taq Dye Terminator Sequencing Kit
(Applied Biosystems, CA, USA). These sequences were
connected by an auto-assembler, and the resultant circu-
lar DNA sequence was refined using sequence data ob-
tained from the C. merolae nuclear genome project by
the whole-genome shotgun method (unpublished data).
Open reading frames and transfer RNA genes were
detected with the DNASIS software package (Hitachi,
Japan).

2.4. Data analysis
Similarity searches of the putative open reading

frames and tRNA sequences against the SwissProt
and GenBank databases were performed with the
program NCBI gapped BLAST29 at the Genome
Net WWW Server (http://www.genome.ad.jp/), over
the Internet. Annotations of the complete plastid
genomes of 11 algae, two land plants, and one pro-
tozoon were obtained from the NCBI Entrez-Genome
database (http://www.ncbi.nlm.nih.gov/Entrez/), and
all the protein-coding regions, except intron-coded pro-
teins, were extracted from the data tables. For each
organism, the median value of the intergenic distances,
which are distances between two neighboring protein
genes and take negative values when they are overlapped,
was determined.

2.5. Phylogenetic analysis of cysT and cysW genes
The amino acid sequences of orthologous genes of cysT,

cysW, and modB were extracted from the nr database
using the similarity search program blastp in NCBI
BLAST 2.2.2, and were aligned using CLUSTAL X30

with the default option. After gaps in the alignment
were excluded and cysT and cysW of C. merolae were in-
cluded, a data matrix composed of 178 amino acids from
82 operational taxonomic units (OTUs) was constructed
and used for the phylogenetic analysis. Neighbor-joining
(NJ) trees31 based on Kimura distances32 were calculated
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using CLUSTAL X. Bootstrap values33 in the NJ analy-
sis were carried out based on 1000 replications also using
CLUSTAL X. The modB genes were designated the out-
group since they are putative paralogs of cysT and cysW.
To provide a more compact figure representation, the tree
was redrawn using TreeExplorer.34

2.6. Phylogenetic analyses of plastids based on concate-
nated amino acid sequences from multiple plastid
genes

The data matrix of the amino acid sequences
of the 41 plastid or cyanobacterial genes was the
same as that used by Martin et al.,35 except
that it included the C. merolae sequences. The
C. merolae sequences were aligned using the similar-
ity search program “blastp” in BLAST 2.1 of NCBI
(http://www.ncbi.nlm.nih.gov/blast/) and CLUSTAL X
and then refined manually. A total of 8308 aligned
amino acids from 17 OTUs was used for the phy-
logenetic analyses. NJ trees based on Kimura dis-
tances were calculated using CLUSTAL X; maximum
parsimony (MP) trees were constructed using a heuris-
tic search with the tree bisection-reconnection (TBR)
branch-swapping algorithm, using PAUP 4.0b10;36 and
quartet puzzling-maximum likelihood (QP) analyses
based on the JTT model with the discrete gamma
model for site heterogeneity were carried out using
TREE-PUZZLE 5.0.37 Bootstrap values33 in the NJ and
MP analyses were based on 1000 replicates. For the QP
method, quartet puzzling support (QPS) values based
on 1000 puzzling steps37 were calculated. In these phylo-
genetic analyses, the cyanobacterium Synechocystis was
designated the outgroup.

3. Results and Discussion

3.1. Physical properties of the plastid genome of
C. merolae

The C. merolae plastid genome is a circular molecule
composed of 149,987 bp, and genes are distributed on
both strands (Fig. 1). The genome size is within the
range of those of other plastid genomes. The overall
G+C content is 37.6%. This base composition is compa-
rable with plastid genomes of land plants and is a little
higher than that of algae (Table 1). There are two sim-
ple explanations for the higher G + C content. First,
the higher gene density of this plastid genome causes
the higher G + C content, since coding regions are usu-
ally more G + C rich than non-coding regions in plastid
genomes. This explanation does not parallel the high
G+C content of land plant plastid genomes, which have
a lower density of genes. Additionally, the coding region
of C. merolae has a higher G + C content than that of
other algal plastid genomes. Alternatively, the high tem-
perature of the C. merolae habitat might have imposed

a selection pressure causing a higher G + C content to
stabilize the genome; however, C. caldarium, which lives
in similar habitats, does not have a G + C-rich genome.

Generally, plastid and cyanobacterial genomes have a
pair of inverted repeats (IR) containing rRNA genes;
however, the C. merolae plastid genome lacks one. In
the Cyanidiophyceae, C. caldarium lacks IRs,10 whereas
Galdieria sulphuraria38 contains tandem repeats with
rRNA genes. Yoon et al.39 demonstrated that Galdieria
is positioned basal to the clade composed of C. caldarium
and C. merolae. Therefore, the IR might have been lost
in the common ancestor of C. caldarium and C. merolae.
However, two pairs of small direct repeats in the
C. caldarium plastid genome that contain a potential
hairpin loop do not exist in the C. merolae plastid
genome.

3.2. Genome condensation
A high degree of condensation is one of the remarkable

features of this plastid genome. About 40% of the protein
genes in the C. merolae plastid genome overlap, which is
quite high compared with other plastid genomes. Plas-
tids in the red lineage have a higher gene density than
do plastids of green lineage (Table 1), but most plastids
in the red lineage have few overlapping genes (Fig. 2A).
The C. merolae plastid genome also has shorter inter-
genic distances than other red lineage genomes. The me-
dian intergenic distance (14 bp) is significantly smaller
than that of its closest relative, C. caldarium, and other
plastids (Table 1).

The extensive overlap of genes might lead to suspicion
about the pseudogenization of overlapped genes, but we
consider this possibility negligible. Although the extent
of overlap is quite large in comparison with other plastid
genomes, most overlaps are shorter than 50 bp (equiv-
alent to 17 amino acids) (Fig. 2A). Figure 2B shows
one example of the 38-bp overlap between rps17 and
rpl14. The N-terminus of Rpl14 protein is highly con-
served and this might weaken the C-terminal sequence of
Rps17 protein. However, since the C-terminus of other
algal orthologs of the Rps17 protein is not very highly
conserved, the C. merolae rps17 gene is likely to func-
tion normally. Additionally, transcripts of some plastid
genes can be edited before translation. RNA editing has
not yet been demonstrated in the plastid of red lineage;
however, we have preliminary evidence that RNA editing
occurs in this plastid genome at least at one site (unpub-
lished data). RNA editing might recover any genomic
sequence weakened by overlapping. We consider that the
extent of overlap in this plastid genome does not seri-
ously deteriorate the function of the majority of over-
lapping genes. Moreover, analysis of a nuclear genome
shows that there are very few substitutes of overlapped
nuclear genes. Therefore, it is suggested that those genes
are not pseudogenes.
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Figure 1. The plastid gene map of C. merolae. The outer and inner sectors represent genes on the clockwise and counterclockwise
strand, respectively. Genes are color-coded by function, as shown at bottom left.

3.3. Gene content
We searched for ORFs longer than 30 codons starting

with an ATG or GTG codon. The C. merolae plastid
genome contains 243 genes, including 3 rRNAs (23S, 16S,
5S), 31 tRNAs, 1 tmRNA, 1 ribonuclease P RNA com-
ponent (rnpB), and 207 protein genes including unidenti-
fied ORFs (Table 2). No genes containing an intron were
identified.

The plastid genomes of the green lineage contain many
genes involved in photosynthesis and gene expression
with a small number of other functions. By contrast,
plastid genomes of the red lineage contain more genes

for ribosomal proteins and photosynthesis components.
Moreover, they possess genes that are involved in the syn-
thesis of amino acids, fatty acids, and pigments, among
others. This is also the case for the C. merolae plastid
genome.

The C. merolae plastid genome contains several genes
that are rarely found in other plastid genomes, such as a
sulfate-transport gene (cysW) (see below). The following
genes are found in both C. merolae and C. caldarium,
but not in Porphyra purpurea:5 crtR, cobA, glmS,
hisH, lpxA, lpxC, menA-F, trmE, ycf49, ycf82, ycf83,
ycf84, ycf85. When all the plastid genes of C. merolae
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Table 1. Number of protein-coding genes, intergenic distance, length and GC content of several plastid genomes.

Species Lineagea)

Number of
protein-coding
genes

Median of
intergenic
distances (bp) Length (bp)

GC content
(%) Accession number

Cyanidioschyzon merolae Red 207 14 149,987 37.6 AB002583

Cyanidium caldarium Red 200 60 164,921 32.7 NC_001840

Porphyra purpurea Red 209 100 191,028 33.0 NC_000925

Guillardia theta Red (2) 147 73 121,524 33.0 NC_000926

Odontella sinensis Red (2) 140 69 119,704 31.8 NC_001713

Toxoplasma gondii Red (2) * 26 22 34,996 21.4 NC_001799

Cyanophora paradoxa Glaucophyte 150 112.5 135,599 30.5 NC_001675

Euglena gracilis Green (2) 62 130 143,172 26.1 NC_001603

Astasia longa Green (2) * 46 128 73,345 22.4 NC_002652

Nephroselmis olivacea Green 156 250 200,799 42.1 NC_000927

Chlorella vulgaris Green 173 243 150,613 31.6 NC_001865

Mesostigma viride Green 105 183 118,360 30.2 NC_002186

Chaetosphaeridium globosum Green 98 155 131,183 29.6 NC_004115

Lotus japonicus Green 81 306 150,519 36.0 NC_002694

Arabidopsis thaliana Green 87 243 154,478 36.3 NC_000932

a) Red lineage (red), green lineage (green), Glaucophyte, and species thought to have plastids by secondary
endosymbiosis (2) are categorized. Asterisks indicate those species with non-photosynthetic plastids.

are compared with those of C. caldarium, eight genes
occur only in C. merolae (cysT, cysW, hupA, infB,
petL, ycf22, ycf38, ycxr), while five genes are found
only in C. caldarium (glnB, ycf26, ycf37, ycf45, ycf58).
C. merolae and C. caldarium share many similar genes.
These common genes may have been maintained because
C. merolae and C. caldarium live in an extreme environ-
ment and are closely related. Similar living conditions
with strong evolutionary pressure may have led to con-
servation of many genes in their plastid genomes.

According to Glockner et al., infB is not present in
the plastid genome of C. caldarium RK-1,10 although we
found infB in the plastid genome of C. caldarium RK-1
in a previous study.22 These two strains of ‘C. caldarium
RK-1’ are probably distinctive species, as these two nu-
cleotide sequences show only approximately 70% identity.

3.4. Genes for RNA polymerases
The C. merolae plastid genome contains rpoA, rpoB,

rpoC, and rpoZ genes for the subunits of RNA poly-
merase. The single gene (rpoC) encoding the β′ sub-
unit of RNA polymerase, which is present in most eu-
bacteria, is split into β′ (rpoC1) and β′′ (rpoC2) genes
in the cyanobacteria and most plastids. However, the
β′ and β′′ subunits are both encoded by a single rpoC
gene in C. merolae, as is the case for most eubacteria,
excluding cyanobacteria. There are two explanations for
the presence of a single rpoC gene in C. merolae. First,

it was generated by fusion of rpoC1 and rpoC2 specifi-
cally in the evolutionary pathway to C. merolae. Alter-
natively, the single rpoC gene might have been transmit-
ted from another bacteria by horizontal transfer. When
the C. merolae rpoC is compared with rpoC1 and rpoC2
in plastids and other cyanobacterial genomes and rpoC in
bacterial genomes, its amino acid sequence is very sim-
ilar to the former genes, supporting the first explana-
tion. It is reasonable that they have been fused under
the strong pressure that causes genome condensation. In
fact, the length of C. merolae rpoC gene shortened to ap-
proximately 90% of the total length of rpoC1 and rpoC2
genes of other red algae.

3.5. The cysT and cysW genes of C. merolae
The plastid genome of C. merolae includes the cysT

and cysW genes which code for components of sulfate
transporter. The cysW gene has not previously been
found in a plastid genome. Moreover, this is the first re-
port of the existence of cysT in a red lineage plastid, while
cysT genes have been identified in the plastid genome
of lower green plants, such as the liverwort Marchantia
polymorpha4 and the green alga Chlorella vulgaris.7 The
products of both cysT and cysW of C. merolae exhibit
high similarity to the corresponding proteins encoded
by cyanobacteria. Furthermore, A phylogenetic tree in-
ferred from the amino acid sequences of cysT and cysW
from various bacteria and C. merolae was constructed
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Overlapping

AGTAAAACAAAAAAATGGATTTATGATTCAAGTGCAAACGCGTCTCAAAGTAGCAGATAACACAGGCGCAAAAGAAGTT

SerLysThrLysLysTrpIleTyrAspSerSerAlaAsnAlaSerGlnSerSerArg

MetIleGlnValGlnThrArgLeuLysValAlaAspAsnThrGlyAlaLysGluVal
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Figure 2. Overlapping genes on the C. merolae plastid genome. (A) Distribution of the intergenic distances in comparison with those
of other species. Negative values represent overlapping. (B) An example of overlapping genes of C. merolae. The 3′ end of the rps17
coding region and the 5′ end of the rpl14 coding region share 38 bp.

by the NJ method (Fig. 3). Two major groups can be
distinguished: cysT and cysW groups. The cysW gene
of C. merolae was a sister to the group of cyanobacte-
rial cysW genes, and the C. merolae cysT gene was po-
sitioned within the plastid/cyanobacterial cysT lineage.
These results suggest that the respective genes were de-
rived from ancestral cyanobacterium independently and
were not produced by duplication.

The gene products of cysT and cysW of C. merolae
are thought to be important for transporting a sulfate
substrate into the plastid. In both enterobacteria40 and
cyanobacteria,41 sulfate uptake is thought to require a
four-component periplasmic transport system. It con-
sists of ATP-binding protein (cysA) and sulfate-binding
protein precursor (sbp), as well as the permease sub-
units (cysT and cysW). Recently, cysA and sbp have
been identified in the nuclear genome of C. merolae as
part of the analysis of the entire genome sequence (un-
published data). Based on the encoded genes and the
degree of amino acid sequence similarity, we postulate
that C. merolae possesses the functional components of

a sulfate-transport system located in the plastid enve-
lope. The presence of this complex on the C. merolae
plastid envelope appears essential.

The sulfate transporter is also an interesting subject
in terms of the evolution of plastids. In M. polymorpha,
cysA and cysT (named mbpX and mbpY, respectively)
were identified in the plastid genome. Although the
other components of the complex have not yet been
found, it was suggested that there was a functional
sulfate-transport system on the analog of C. merolae.
In contrast, neither the plastid nor nuclear genomes of
higher plants, such as completely sequenced Arabidopsis
thaliana, contain genes encoding polypeptides homolo-
gous to components of the bacterial sulfate transport
complex. In higher plants, it has been suggested that
other machinery has replaced the bacteria-type sulfate
transport complex in the course of evolution. These genes
locate the C. merolae plastid as an intermediate between
green and red lineages, suggesting the importance of this
organism in study of the plant evolution.
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Table 2. Functional classification of C. merolae plastid genes.

classification number genes

Genetic system

Maintenance 2 dnaB hupA

RNA polymerase 4 rpoA rpoB rpoC rpoZ

Transcription factors 4 ycf27 ycf28 ycf29 ycf30

Translation 4 infB infC tsf tufA

Ribosomal proteins 27 rpl1 rpl2 rpl3 rpl4 rpl5 rpl6 rpl11 rpl12

rpl13 rpl14 rpl16 rpl18 rpl19 rpl20 rpl21 rpl22

rpl23 rpl24 rpl27 rpl28 rpl29 rpl31 rpl32 rpl33

rpl34 rpl35 rpl36

19 rps1 rps2 rps3 rps4 rps5 rps6 rps7 rps8

rps9 rps10 rps11 rps12 rps13 rps14 rps16 rps17

rps18 rps19 rps20

tRNA maturation 1 trmE

Protein quality control 4 clpC dnaK ftsH groEL

Photosystems

Phycobilisomes 9 apcA apcB apcD apcE apcF cpcA cpcB cpcG

nblA

Photosystem I 13 psaA psaB psaC psaD psaE psaF psaI psaJ

psaK psaL psaM ycf3 ycf4

Photosystem II 18 psbA psbB psbC psbD psbE psbF psbH psbI

psbJ psbK psbL psbN psbT psbV psbW psbX

psbY psbZ

Cytochrome complex 10 petA petB petD pet G petJ pet L petM pet N

ccsA ycf44

Redox system 3 ftrC petF trxM

ATP synthesis

ATP synthase 8 atpA atpB atpD atpE atpF atpG atpH atpI

Metabolism

Carbohydrates 5 odpA odpB rbcL rbcS cfxQ

Lipids  5 accA accB accD acpP crtR

Nucleotides 1 carA

Amino acids 7 argB gltB hisH ilvB ilvH trpA trpG

Complex sugars 3 glmS lpxA lpxC

Cofactors 12 chlI cobA lipB menA menB menC menD menE

menF moe B preA thiG

Transport

Transport 9 cysT cysW secA secY tatC ycf16 ycf24 ycf85

ycf84

Unknown

Conserved ORFs 25 ycf10 ycf12 ycf17 ycf19 ycf20 ycf22 ycf23 ycf33

ycf38 ycf39 ycf40 ycf49 ycf52 ycf53 ycf54 ycf55

ycf59 ycf60 ycf62 ycf65 ycf80 ycf82 ycf83 ycf86

ycxr

Unique ORFs * 14 ORF32 ORF40 ORF41.1 ORF41.2 ORF44 ORF45 ORF47.1 ORF47.2

ORF47.3 ORF60 ORF138 ORF147 ORF340 ORF515

RNA genes

rRNAs 3 rrn16 rrn23 rrn5

tRNAs 31 trnA trnC trnD trnE trnF trnG trnG trnH

trnI trnI trnK trnL trnL trnL trnL trnM

trnfM trnN trnP trnQ trnR trnR trnS trnS

trnS trnT trnT trnV trnV trnW trnY

Miscellaneous RNAs 2 ssrA rnpB

*) The numbers indexing ORFs refer to the number of amino acid residues in the deduced polypeptide.

3.6. Phylogenetic analyses of plastids based on concate-
nated amino acid sequences from multiple plastid
genes

Figure 4 shows the phylogenetic tree constructed using
the concatenated amino acid sequences of the 41 plas-

tid genes. The phylogenetic relationships resolved in
this study were essentially consistent with those found
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Figure 3. Phylogenetic relationships of cysT and cysW genes from
various plastids and prokaryotes, with modB genes designated
as the outgroup. The tree was constructed based on 178 amino
acid sequences by the neighbor-joining (NJ) method31 using on
Kimura distances.32 Branch lengths are proportional to Kimura
distances, which are indicated by the scale bar below the tree.
Numbers at branches represent the bootstrap values (50% or
more) based on 1000 replications. “Cm” indicates genes from
C. merolae. Triangles represent compressed branches, and the
number of OTUs compressed is shown in the parenthesis.

in Martin’s analysis,35 except for relationships regarding
C. merolae. The plastids principally belong to the green
lineage, red lineage, and glaucocystophyte Cyanophora.
The red lineage is subdivided into two sister clades, one
containing two cyanidiophycean algae (Cyanidium and
Cyanidioschyzon) and the other composed of two sec-
ondary plastid-containing algae (the diatom Odontella
and the cryptophyte Guillardia) and the rhodophycean
alga Porphyra. Although high bootstrap/QPS values
(99–100%) in the NJ and QP analyses supported the
robustness of these two clades, the MP method weakly
resolved the latter clade (with 55% bootstrap values).
Within the latter clade, Porphyra and Guillardia were
resolved as sister OTUs with 79% and 100% boot-
strap/QPS values in the MP and NJ/QP calculations,
respectively.

Some previous plastid phylogenies showed that the sec-

ondary plastids of Heterokontophyta, such as Odontella,
were phylogenetically related to the Cyanidiales or to
Cyanidiophyceae.39,42 However, Yoon et al. demon-
strated that the secondary plastids from the crypto-
phytes, haptophytes, and heterokonts constitute a mono-
phyletic group that is sister to the rhodophycean lineage
(excluding the Cyanidiales),43 based on a large number
of OTUs and the large amount of sequence data (total of
5827 nucleotides). Our phylogenetic results are consis-
tent with those of Yoon et al.,43 in that Cyanidiophyceae
is a basal clade within the red lineage of plastids. How-
ever, our study suggests non-monophyly of the secondary
plastids, as in Martin et al.35 This discrepancy may be
due to the small numbers of OTUs analyzed in this
study (see Zwickl et al.;44 Yoon et al.43) or it may result
from differences in the sequence data used between Yoon
et al.43 (nucleotide sequences) and Martin et al.35/this
study (amino acid sequences). The addition of OTUs
from a wide range of plastids in the red lineage to the
present multiple plastid-gene phylogeny or other studies
using data independent of plastid gene sequences may
resolve this problem.

4. Conclusions and Perspectives

The complete plastid genome sequence of C. merolae
provides us with valuable information for understanding
the processes of plastid evolution and the phylogenetic re-
lationships among photosynthetic organisms. The 150-kb
C. merolae plastid genome contains 243 genes. When
compared with other plastid genomes, the higher gene
density of C. merolae is characteristic. It is suggested
that the C. merolae plastid genome was involved in de-
generate evolution after the plastid endosymbiosis. The
cysT and cysW genes have been identified in a red lin-
eage plastid genome for the first time. This is valuable
information, and will help determine the evolutionary re-
lationships of three lineages: the cyanobacteria, the red
lineage, and the green lineage. In order to understand the
evolution and phylogenetic relationships of the plastids
produced by the endosymbiosis of an ancestral cyanobac-
terium, comprehensive nuclear genome analysis is very
important, as shown for the sulfate transporter. The en-
tire gene composition of C. merolae will soon be reported,
as the sequence of nuclear genome of C. merolae was re-
cently completed. This will provide important informa-
tion about the formation and evolution of the chloroplast.
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Figure 4. Neighbor-joining (NJ) trees31 based on Kimura distances32 using 8308 amino acid sequences from the 41 plastid genes35

of 17 OTUs representing a wide-range of photosynthetic eukaryotic taxa. Branch lengths are proportional on Kimura distances,
which are indicated by the scale bar below the tree. Numbers above branches represent the bootstrap values (50% or more) based
on 1000 replications of the NJ method (based on the Kimura distances). Numbers without and with parentheses below branches
are bootstrap values (50% or more) based on 1000 replications of the full heuristic MP analysis (with simple addition sequence) and
QPS values (50% or more) by quartet puzzling-maximum likelihood calculation using TREE-PUZZLE 5.037 based on JTT model
with the discrete gamma model for the site-heterogeneity. Single and double asterisks indicate the primary and secondary plastids,
respectively.
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